skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jordan, Chris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 5, 2026
  2. Abstract Mammalian neocortex contains a highly diverse set of cell types. These cell types have been mapped systematically using a variety of molecular, electrophysiological and morphological approaches1–4. Each modality offers new perspectives on the variation of biological processes underlying cell-type specialization. Cellular-scale electron microscopy provides dense ultrastructural examination and an unbiased perspective on the subcellular organization of brain cells, including their synaptic connectivity and nanometre-scale morphology. In data that contain tens of thousands of neurons, most of which have incomplete reconstructions, identifying cell types becomes a clear challenge for analysis5. Here, to address this challenge, we present a systematic survey of the somatic region of all cells in a cubic millimetre of cortex using quantitative features obtained from electron microscopy. This analysis demonstrates that the perisomatic region is sufficient to identify cell types, including types defined primarily on the basis of their connectivity patterns. We then describe how this classification facilitates cell-type-specific connectivity characterization and locating cells with rare connectivity patterns in the dataset. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  3. Free, publicly-accessible full text available April 10, 2026
  4. Free, publicly-accessible full text available April 10, 2026
  5. Abstract Advances in electron microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets, which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this changing and expanding data landscape. Here we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure that provides scalable solutions for proofreading and flexible annotation support for fast analysis queries at arbitrary time points. Deployed as a suite of web services, CAVE empowers distributed communities to perform reproducible connectome analysis in up to petascale datasets (~1 mm3) while proofreading and annotating is ongoing. 
    more » « less
  6. Abstract Understanding the brain requires understanding neurons’ functional responses to the circuit architecture shaping them. Here we introduce the MICrONS functional connectomics dataset with dense calcium imaging of around 75,000 neurons in primary visual cortex (VISp) and higher visual areas (VISrl, VISal and VISlm) in an awake mouse that is viewing natural and synthetic stimuli. These data are co-registered with an electron microscopy reconstruction containing more than 200,000 cells and 0.5 billion synapses. Proofreading of a subset of neurons yielded reconstructions that include complete dendritic trees as well the local and inter-areal axonal projections that map up to thousands of cell-to-cell connections per neuron. Released as an open-access resource, this dataset includes the tools for data retrieval and analysis1,2. Accompanying studies describe its use for comprehensive characterization of cell types3–6, a synaptic level connectivity diagram of a cortical column4, and uncovering cell-type-specific inhibitory connectivity that can be linked to gene expression data4,7. Functionally, we identify new computational principles of how information is integrated across visual space8, characterize novel types of neuronal invariances9and bring structure and function together to uncover a general principle for connectivity between excitatory neurons within and across areas10,11
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  7. Abstract Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (∼1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE’s data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date. 
    more » « less
  8. Summary The neocortex is one of the most critical structures that makes us human, and it is involved in a variety of cognitive functions from perception to sensory integration and motor control. Composed of repeated modules, or microcircuits, the neocortex relies on distinct cell types as its fundamental building blocks. Despite significant progress in characterizing these cell types1–5, an understanding of the complete synaptic partners associated with individual excitatory cell types remain elusive. Here, we investigate the connectivity of arguably the most well recognized and studied excitatory neuron in the neocortex: the thick tufted layer 5 pyramidal cell6–10also known as extra telencephalic (ET)11neurons. Although the synaptic interactions of ET neurons have been extensively explored, a comprehensive characterization of their local connectivity remains lacking. To address this knowledge gap, we leveraged a 1 mm3electron microscopic (EM) dataset. We found that ET neurons primarily establish connections with inhibitory cells in their immediate vicinity. However, when they extend their axons to other cortical regions, they tend to connect more with excitatory cells. We also find that the inhibitory cells targeted by ET neurons are a specific group of cell types, and they preferentially inhibit ET cells. Finally, we observed that the most common excitatory targets of ET neurons are layer 5 IT neurons and layer 6 pyramidal cells, whereas synapses with other ET neurons are not as common. These findings challenge current views of the connectivity of ET neurons and suggest a circuit design that involves local competition among ET neurons and collaboration with other types of excitatory cells. Our results also highlight a specific circuit pattern where a subclass of excitatory cells forms a network with specific inhibitory cell types, offering a framework for exploring the connectivity of other types of excitatory cells. 
    more » « less
  9. Abstract Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×107chemical synapses between ∼130,000 neurons reconstructed from a femaleDrosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species. 
    more » « less